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In this paper, a new integer minimal principle model for centrosymmetric

structures is presented; one which fully accounts for reciprocal-space phase

shifts present in non-symmorphic space groups. Additionally, characterization of

false minima of the model is done in terms of even and odd triplets. Based on

this characterization, a triplet sieve method is proposed. First, Gaussian

elimination using only a subset of reliable triplets is employed for phasing.

Triplet subsets are generated using a progressively smaller set of the strongest

reflections. Several phase solution sets are generated by enumerating the

degrees of freedom present. To facilitate computational evaluation of the quality

of these phase solutions, these phase sets are passed into the crystallographic

software SnB, which expands the reflection set in two cycles. The final solution is

identified via statistics of two crystallographic figures of merit. Computational

results are presented for a variety of structures.

1. Background and theory

Full characterization of a crystal structure requires both

amplitude and phase information for a sufficient number of

structure factors. In a traditional X-ray diffraction experiment,

the diffraction intensity is related to the amplitude of the

structure factor. Unfortunately, the phase of a given structure

factor cannot be determined from measurements of the

diffraction intensity alone. The lack of phase information in

this context has been coined ‘the phase problem of X-ray

crystallography’. While structure determination from X-ray

diffraction data is employed almost on a routine basis

worldwide, it is often a major challenge to solve the phase

problem. The minimal principle, a method for phasing,

involves the minimization of a cosine figure of merit, originally

proposed by Debaerdemaeker & Woolfson (1983).
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where M denotes the total number of reflections from an

X-ray diffraction experiment after all the symmetry-equiva-

lent reflections have been removed, T denotes the set

of triplet phase invariants, At ¼ 2N�1=2jEHjjEKjjE�H�Kj,

!t ¼ I1ðAtÞ=I0ðAtÞ, jEj is a normalized structure-factor

amplitude, N is the number of atoms in the unit cell, In is a

modified Bessel function of order n, and H and K denote

Miller indices. The unknowns in this model are the phases �Hm

for all m 2 M and the triplet invariants �t for all t 2 T. It has

been demonstrated (Miller et al., 1993) that a set of phases that

minimizes Rmin and satisfies proper atomicity constraints on

electron density corresponds to the correct set of phases for

the true crystal structure in all practical cases.

Solution of the minimal principle formulation is non-trivial,

since the objective function is non-linear and non-convex.

Hence, the solution space contains many local optima. Most

contemporary algorithms for solving the minimal principle

involve some combination of local search and stochastic

optimization techniques, neither of which guarantee a globally

optimal solution. Towards resolving the multiple local minima

difficulty in this context, the minimal principle was reformu-

lated for centrosymmetric structures into a mixed-integer

linear program by Vaia & Sahinidis (2003). It is well known

that the phases of a centrosymmetric structure are restricted

to either 0 or �, provided the center of inversion is at the

origin. This allows for modeling of the invariants modulo �
with binary variables � and �:

�t ¼ 2�t þ �t: ð4Þ

The value of the cosine of the invariant can then be written in

terms of �, since this variable determines whether or not the

argument is odd or even:

cosð�tÞ ¼ 1� 2�t: ð5Þ



This can then be substituted into the original minimal prin-

ciple to derive the integer minimal principle of Vaia & Sahi-

nidis (2003).
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A non-zero global optimum of this integer minimal principle

can be found in polynomial time using methods developed by

Vaia & Sahinidis (2005).

The computational results in Vaia & Sahinidis (2003) and

Vaia & Sahinidis (2005) demonstrated that using the above

integer minimal principle solution as a starting point for phase

searching in the CRUNCH crystallographic system (de Gelder

et al., 1993) is more advantageous than using a randomly

generated starting set of phases. However, model M2 comes

with two shortcomings:

(i) M2 does not account for phase shifts that are present in

non-symmorphic crystallographic space groups;

(ii) M2 does not enforce atomicity constraints on electron

density that have been found necessary in order to obtain

meaningful sets of phases (Miller et al., 1993).

As a result, a solution vector of M2 is unlikely to provide a

correct structure, unless it is further processed by another

phasing algorithm. These shortcomings are addressed in this

manuscript.

2. Phase shifts

The set of symmetry elements associated with any space group

defines relations among the atoms that make up the crystal.

These symmetry elements can always be described in terms of

a single rotational, R, and/or translational, v, operation. For

example, in a crystal with rotational symmetry R, the electron

densities, �ðxÞ and �ðRxÞ, at positions x and Rx, respectively,

are identical:

�ðxÞ ¼ �ðRxÞ: ð10Þ

Just as symmetry relations require certain equalities in direct

space, an analogous situation exists in reciprocal space. Using

the same symmetry operation in reciprocal space, we have

FH ¼
P

j

fj expð2�iH � xjÞ ð11Þ

¼
P

j

fj expð2�iH � RxjÞ ð12Þ

¼ FHR; ð13Þ

where xj and fj denote the position and atomic scattering

factor of atom j, while FH is the structure factor corresponding

to reflection H. Clearly, then, the phase of H is equal to the

phase of HR for the above example with only rotational

symmetry. For the case of a symmetry operation with a rota-

tional element, R, and translational element, v, we have

FH ¼
P

j

fj expð2�iH � xjÞ ð14Þ

¼
P

j

fj exp½2�iH � ðRxj þ vÞ� ð15Þ

¼ expð2�iH � vÞ
P

j

fj expð2�iH � RxjÞ ð16Þ

¼ expði�ÞFHR; ð17Þ

where � is a phase shift. For centrosymmetric crystals, this

phase shift is restricted to values of 0 or �.

The original integer minimal principle formulation M2 does

not include any additional symmetry requirements in the

constraint set. Lack of these extra constraints allows for a

simple solution approach to the original formulation (Vaia &

Sahinidis, 2005). Briefly, the objective function of the original

formulation is minimized when all �t equal 0, reducing the

problem to that of solving a system of homogeneous equations

defined by the constraints. The system is homogeneous, so it

will always have a solution. Further, based on origin selection

for a particular space group, a certain number of degrees of

freedom will always exist in the homogeneous solution. In

P21=c, for instance, regardless of how many triplet relations

are used, there will always be a minimum of three degrees

of freedom. Since these degrees of freedom can take values

of either 0 or �, a non-trivial solution to the original

minimal principle will always exist. Unfortunately, most

such solutions produce phases with inconsistent symmetry

relations and, thus, do not correspond to a meaningful

structure.

The proposed new integer minimal principle ensures that

phases maintain their symmetry relations. Since the integer

minimal principle requires that the crystal be centrosym-

metric, symmetry-related phases are either equal or differ by a

factor of �. For a reflection with Miller index H, let S be the set

of symmetry reflections related to the base reflection by a shift

of �. Similarly, let U be the set of reflections related to the base

reflection by a shift of 0. Each symmetry reflection s or u is

related to its corresponding base reflection by a rotation Rs or

Ru in equal order

�H þ �HRs
¼ 1 s 2 S ð18Þ

�H ¼ �HRu
u 2 U; ð19Þ

where it is clear that the Miller index of the symmetry-related

reflection is HRs in the shifted case and HRu in the unshifted

case. Additionally, the cardinalities of S and U can be related

to the total number of symmetry operations in a given space

group � as follows:

cardðSÞ þ cardðUÞ ¼ �: ð20Þ

In other words, the set of all HRs and HRu for every reflection

is the full sphere of data for the experiment. Adding the

constraints defined by symmetry relations (18) and (19) to the

original integer minimal principle M2 yields the new integer

minimal principle.
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where M, as before, denotes the total number of reflections

from an X-ray diffraction experiment after all the symmetry-

equivalent reflections have been removed, Sm is the set of

shifted phases related to Hm by rotational symmetry Rs and

Um is the set of unshifted phases related to Hm by rotational

symmetry Ru. In the absence of (23) and (24), Vaia & Sahinidis

(2003) and Vaia & Sahinidis (2005) found that setting all �t to

0 solves M2 and that the global solution of the model can be

obtained by linear algebra on the homogeneous system. In the

presence of shifts, however, the constraint set of M3 can have

no solution after all �t are set to 0. The latter case requires the

use of integer programming software, such as CPLEX (ILOG,

2003), to solve the above integer minimal principle model.

This, in general, could be a difficult task. In addition, the

model in its present form does not account for atomicity

constraints. In the next section, we propose a way to deal with

atomicity constraints. Moreover, the proposed approach

avoids the need for an integer programming software. Instead,

we rely on the simple and efficient linear algebra techniques:

sparse Gauss elimination with a Markowitz pivot selection.

3. Atomicity constraints characterization via even
triplets

A phase search done entirely in reciprocal space, which yields

a globally optimal Rmin value, may converge to so-called false

minima, minima that do not correspond to a true set of phases

(Xu et al., 2000). These false minima are characterized by the

presence of a large ‘uranium’ peak on the corresponding

Fourier map and do not correspond to a meaningful structure.

For symmorphic space groups, an obvious example of a false-

minimum solution for the minimal principle model is that of

all phases set to zero. Unfortunately, there are additional, less

trivial and more difficult to characterize, false minima for all

space groups.

It is useful to define some terminology with regard to a true

phase solution for a given structure. We define a triplet for

which

� ¼ �H þ �K þ ��H�K ¼ 0 ðmod 2Þ ð27Þ

as an even triplet and a triplet for which

� ¼ �H þ �K þ ��H�K ¼ 1 ðmod 2Þ ð28Þ

as an odd triplet. This classification is useful since odd triplets

are always present in true phase sets (Xu & Hauptman, 2004).

Further, the odd triplets characterize the gap between the

unconstrained Rmin and the Rmin of the true structural solution.

Inclusion of odd triplets in a traditional direct-method

technique can have a detrimental impact on solution quality.

Thus, characterization of odd triplets has been extensively

explored in relevant direct-methods literature. Traditionally,

odd triplets have been identified using quintet extension (cf.

Giacovazzo, 1976, 1977). Previous attempts have focused on

filtering triplet lists to remove odd triplets before phasing

(Gilmore & Hauptman, 1985).

It has been observed that there is a correlation between the

even triplets and their associated A values: those triplets

having large A values have a high probability of being even

(Xu & Hauptman, 2004). This observation coincides with the

conclusion derived from the Sayre equation, which explores

the relationship among the normalized structure factors in a

crystal:

EH ¼ �H

P
K

EKEH�K: ð29Þ

This equation can also be written in terms of amplitude and

phase information:

jEHj expði�HÞ ¼ �H

P
K

jEKjjEH�Kj exp½ið�K þ �H�KÞ�: ð30Þ

Arguments with a very large amplitude on the right-hand side

of the last equation will have an angular component similar to

that of the left-hand side. Hence, the following approximation

is particularly valid:

�H � �K þ �H�K: ð31Þ
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Table 1
Crystal information for test structures.

Structure Chemical Atoms Space Resolution
No. formula (ASU) group (Å) Reference

1 C30H32N2O6 19 P21=c 0.84 Sun et al., (2002)
2 C44H38O4 24 P�11 0.84 Vande Velde et al. (2002)
3 C36H62 36 P21=c 0.75 Bragg et al. (2002)
4 C30H22O6S 37 P21=c 0.82 Krishnakumar et al. (2002)
5 C34H26N2O 37 P21=c 0.84 Zhuang et al. (2002)
6 C5H12NO+

� C28H37B6N2O10
�
� 0.5C4H10O 55.5 P�11 0.76 Kliegel et al. (2002)

7 C41H78O11Si8 60 P�11 0.81 Arnold & Blake (2001)
8 C50H66O6 � C3H7NO 61 P21=c 0.84 Bryan & Levitskaia (2002)
9 3C40H32O2 � 4C6H6 75 P�11 0.84 Ohba et al. (2002)



Since it is the product of EH, EK and EH�K, which defines a

triplet A value, a triplet with a very large A value has a high

probability of being even.

4. The triplet sieve method

A set of test structures along with their important crystal-

lographic information, including chemical formula, non-H

atoms in the asymmetric unit, space group and reference, are

listed in Table 1. In SnB (Weeks & Miller, 1999), triplets and

their associated A values are typically generated from

M ¼ 10N reflections having the largest jEj values, where N is

the number of non-H atoms in the asymmetric unit. All triplets

are sorted in descending order of A values and the strongest

T ¼ 100N triplets are selected to construct the input data for

the integer minimal principle M3.

From the deposited atomic coordinates in CIF files, and

based on the assumption that atomic scattering factors equal

the atomic number of the elements, we calculate the ‘true’

phases of the structures and, from these, the percentages of

even and odd triplets listed in Table 2. For each structure, the

table also lists the occurrence of the first odd triplet when

triplets are sorted in descending order of A values. From Table

2, one should immediately notice that the percentage of odd

triplets is significantly smaller than the percentage of even

triplets. In addition, the position of the first odd triplet in the

sorted list of triplets, ranging from 61st for structure 8 to

1371st for structure 7, suggests that, for each structure, there

exists a number T 0<T such that �t ¼ �Ht
þ �Kt

þ ��Ht�Kt
,

1 � t � T 0, are even triplets. When sufficient degrees of

freedom are present, the global minimum of M3 can be found

by solving a set of linear equations. This set of T 0 triplets can

always be chosen such that the system is underdetermined.

Thus, the phases involved in these T 0 triplets can be calculated

by setting all �t to 0. It then remains to solve the following

system for the phases.

Model M4

�Ht
þ �Kt

þ ��Ht�Kt
¼ 0; 8t 2 T 0 ð32Þ

�Hm
þ �HmRs

¼ 1; 8m 2 M; 8s 2 Sm ð33Þ

�Hm
¼ �HmRu

; 8m 2 M; 8u 2 Um ð34Þ

� 2 f0; 1g: ð35Þ

System M4 can be solved in polynomial time using sparse

Gaussian elimination in a binary field as was done by Vaia &

Sahinidis (2005) for model M2, which does not involve

equations (33) and (34). Of course, system M4 has multiple

solutions because the number of phases is greater than the

number of equations. The exact number of solutions to system

M4 depends on the number of degrees of freedom in M4. This

number is the subject of the next subsection.

4.1. Degrees of freedom

It is clear from Table 2 that a small set of the strongest

triplets will contain, if any, a very small number of odd triplets.

Unfortunately, such a system of equations may also have a

very large number of degrees of freedom. For a system with 	
degrees of freedom, one would have to consider 2	 possible

phase solutions. To curtail computational effort, it is thus

important to develop ways for reducing the number of degrees

of freedom. On the other hand, a very small number of

degrees of freedom may also be unacceptable since the

number of reflections that can be phased is determined solely

by their participation in the truncated triplet set. There are

two possible approaches to address this trade-off between
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Table 2
Triplet information for test structures.

Even Odd First Total
Structure triplets (%) triplets (%) odd triplets

1 89.3 10.7 210 3800
2 93.5 6.5 555 4800
3 88.6 11.4 125 13780
4 93.5 6.5 96 3700
5 86.8 13.2 108 4200
6 89.6 10.4 267 3700
7 98.9 1.1 1371 4600
8 86.6 13.4 61 6100
9 89.1 10.9 142 5500

Figure 1
Degrees of freedom for truncated triplet sets: Strongest triplets generated
from 10N reflections.

Figure 2
Degrees of freedom for truncated reflection sets: all triplets generated
from strongest truncated reflection sets



reducing the computational effort and obtaining a meaningful

solution.

(i) Triplet generation can be done based exclusively on the

use of strongest triplets. Fig. 1 illustrates how the number of

degrees of freedom of system M4 increases as the triplet list

(generated from M ¼ 10N reflections) is progressively trun-

cated for a selection of structures. A value of �1 for the

degrees of freedom indicates that system M4 is over-

determined. As seen in this figure, in all cases, truncation that

is sufficient to ensure that no odd triplets are present may also

raise the number of degrees of freedom to an unacceptable

level from the computational point of view. For instance, for

structure 9 (top line in the figure), with over 30 degrees of

freedom, one would be required to consider over 1 billion

phase solution sets. Yet the figure indicates that, for all

structures, the curves are approximately unimodal, thus

suggesting that the identification of a cut-off T 0 on the

increasing part of the curves may suffice to solve the problem.

(ii) Triplet generation can also be done based exclusively on

a subset of the strongest reflections. For a given set of strong

reflections, one can simply generate all possible triplet in-

variants, thus generating a subset of the constraints of system

M4. Fig. 2 illustrates the number of degrees of freedom as a

function of the number of reflections for the same structures

considered in Fig. 1. It is important to note that triplets

constructed from strong reflections will also have large A

values. Thus, the triplets generated from a truncated reflection

set will, in practice, have a small number of odd triplets while

maintaining a reasonably small number of degrees of freedom.

For structures in a non-symmorphic space group, there is a

limit on the total number of triplets that can be used since, as

the number of triplet relations increases, the system will

eventually have no solution. Further, Figs. 1 and 2 suggest that

identifying a suitable subset of triplets based on a subset of

strongest reflections is likely to result in fewer degrees of

freedom. This method also has the advantage of solving for the

strongest reflections, which will then result in a more accurate

electron-density map. Hence, we opt to use this generation

technique.

No matter whether generation of triplets is done based on

strongest triplets or reflections, the number of degrees of

freedom can be further reduced via the following two

approaches.

(i) The origin of a crystal structure has to be fixed in order

to assign individual phase values. In the space groups explored

in this paper, three linearly independent reflections can be

identified and assigned phase values arbitrarily, thus reducing

the number of degrees of freedom by 	origin ¼ 3.

(ii) In some triplet systems, it is possible for a reflection to

participate in only one triplet equation. In these situations,

wrong assignment of the phase value for this reflection,

termed isolated reflection, will only affect solution quality

marginally. Hence, isolated reflections do not represent critical

degrees of freedom in the system and their values can also be

assigned arbitrarily. We denote the number of these degrees of

freedom by 	isolated.

We can now define the number of reduced degrees of

freedom, 	�, as 	� ¼ 	� 	isolated � 	origin. Once the number of

reduced degrees of freedom has been identified, the corre-

sponding sets of 2	
�

phase solutions will need to be explored,

as opposed to 2	 solutions if the degrees of freedom are not

reduced. As an example, the system of triplets generated from

the top 102 reflections of structure 8 has 	 ¼ 9 and 	� ¼ 2.

Thus, elimination of isolated and origin-related phases reduces

the number of phase solutions for this structure from 29 ¼ 512

to 22 ¼ 4, while one out of the latter 4 sets of solutions still

provides a true set of phases.

Once the phases corresponding to strong reflections are

found, one can proceed to construct an electron-density map,

generate atomic positions after peak picking, and use these

atomic positions to generate a complete set of phases.

5. Incorporating the triplet sieve method into SnB

A progressively smaller set of reflections will effectively

remove odd triplets and, consequently, improve the likelihood

of converging one of the 2	
�

solutions to a true structural

solution. Once the number 	� of reduced degrees of freedom

has been identified, the corresponding 2	
�

solutions can then

be expanded to complete sets of phases via a crystallographic

computing program such as SnB (Weeks & Miller, 1999). Our

implementation of the triplet sieve procedure within SnB is

outlined in Fig. 3.

First, a set of traditional inputs is provided to the SnB

software package. This includes unit-cell parameters, diffrac-

tion wavelength, cell contents, a space-group specification and

hkl data. This information is then used by SnB to produce

formatted reflection and triplet invariant files. These inputs

are then passed to the triplet sieve, along with a specification

for how many reflections, dM, should be removed after each

iteration.

The sieve first probes for a good starting number of

reflections. This is done based on two main criteria: (a)

research papers

168 Smith, Xu and Sahinidis � Minimal principle and triplet sieve method Acta Cryst. (2007). A63, 164–171

Figure 3
Incorporating the triplet sieve into SnB



sufficient number of degrees of freedom and (b) evidence of

local decrease in the degrees of freedom with respect to

decreasing number of reflections. The number of degrees of

freedom for a successful sieve must be greater than the

number of reflections required to specify an origin: this

prevents solution of a homogeneous system for which the

phases calculated are equivalent to the solution of all phases

set to zero. This threshold can easily be converged upon by

testing the degrees of freedom in a system of T triplets

generated from Mi reflections using a binary search starting

from Mmax. Here, Mmax can be the total number of reflections

recorded in the data file. However, Mmax is typically set to the

number of reflections SnB phases with, i.e. 10N. Once the

number of reflections to be used has been determined, it is still

important to determine whether or not the number of degrees

of freedom decreases for a small decrease in the number of

reflections. This is particularly important for symmorphic

space groups; in these situations, the set of triplets to sieve

with can be arbitrarily large since the system of equations

generated is always homogeneous. Sufficient descent is

currently defined as when the number of degrees of freedom

drops by at least three when the number of reflections is

reduced by dM. No phase solutions are calculated during the

probing phase; the probing process merely calculates the

number of degrees of freedom of M4 for different subsets T 0

of T.

Next, execution proceeds into sieve deduction/expansion

iterations. The sieve will generate a set of triplets based on Mi.

This set of triplets is used to find solutions for all the reflec-

tions at Mi, in terms of a specific number of reduced degrees of

freedom, 	�. The phase solutions are generated by enumer-

ating all possible degrees of freedom. Each of the thus

generated 2	
�

phase solutions is then passed to SnB for phase

expansion via a dual-space cycling. The known phases from

the triplet sieve method are fixed and unknown phases, with

random initial values, are subject to change during the cycling.

After a predetermined number of SnB cycles, the resultant

minimal function values, Rmin, and crystal R values, Rcrys, are

used for automatic structure solution detection. If an accep-

table solution is identified, the sieve procedure terminates;

otherwise, we set Miþ1 ¼ Mi � dM, and the sieve procedure is

repeated.

Currently, the method terminates when any one of the

following criteria is met.

(i) When Mi falls below some lower bound. This criterion is

based on an estimation of when, despite the accuracy of the

phases provided, SnB is unable to converge in a pre-

determined number of SnB cycles to a proper solution.

(ii) When 	� is too high for more than one consecutive

iteration. By default, the sieve considers an iteration with

	� � 7 as having too many solutions to enumerate.

(iii) When the highly effective solution detection criterion

of Xu et al. (2006) is satisfied. This criterion uses the standard

deviation and average of Rmin and Rcrys from previous trials,

and is applied once the number of phase expansions exceeds

five.

6. Results and discussion

The sieve procedure was tested on each of the structures

presented in Table 1. First, using the deposited CIF file, basic

crystallographic information was input to SnB, including space

group, cell parameters, chemical formula and radiation type.

Then, using the DREAR package in SnB, E values were

generated from the experimental hkl data provided by the

authors listed in Table 1. As a final initialization step, SnB was

used to generate reflection and invariant files, typically

containing 10N reflections and 100N triplets. Then, a sieve run

was executed using dM ¼ 10 for every structure. The results of

running the sieve method on each of the nine sample struc-

tures are presented in Table 3. In this table, M0 is the number

of strongest reflections the probe terminated on, Mfinal is the

number of strongest reflections the triplet sieve method used

in the final iteration in order to solve the problem, deduction is

the number of sieve iterations, i.e. the number of times that M

was decremented by dM, 	� is the number of reduced degrees

of freedom in the final iteration, expansion is the total number

of SnB jobs for phase expansion, Rmin is the minimal function

value for the identified solution, Rcrys is the crystallographic

merit function for the identified solution, and MPE is the

mean phase error based on atomic coordinates provided in the

CIF for each structure.

First and paramount, all of these solutions from the sieve

method generated density maps with geometry and connec-

tivity consistent with the published structural solutions.

Second, the number of SnB cycles for phase expansion was

reduced to 2 for the identified solutions, rather than the

default value of N. The comparison of the sieve method versus

SnB, based on the (average) number of dual-space cycles

needed for producing a correct structure solution, is provided

in Table 4, where the second and the third columns indicate

the total number of dual-space cycles needed to produce the

first solution from sieve and SnB, respectively, while the fourth

column is the average number of cycles per SnB solution,

calculated by a formula of 1000C/S, based on the number of

solutions (S) produced from 1000 SnB trials with a default

number of cycles (C) per trial. This comparison shows that the

sieve method is anywhere from two times to several thousand

times faster in terms of cycles run than SnB for producing a

correct structure solution.
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Table 3
Sieve performance on test structures.

Structure M0 Mfinal Deduction 	� Expansion Rmin Rcrys MPE (o)

1 72 52 3 2 10 0.313 0.24 0.0
2 100 90 2 4 11 0.170 0.21 0.0
3 109 99 2 7 37 0.790 0.27 6.9
4 65 55 2 3 16 0.206 0.30 1.5
5 95 85 2 4 10 0.434 0.22 1.0
6 146 126 3 7 41 0.370 0.18 1.3
7 119 119 1 5 7 0.067 0.24 2.1
8 102 102 1 2 4 0.587 0.23 3.3
9 132 132 1 4 15 0.354 0.21 0.5



The sieve does introduce some overhead associated with the

linear system solution and enumeration of degrees of freedom.

The total computation time exerted by the sieve versus SnB is

shown in Table 5. The second column shows the sieve-modi-

fied SnB total time, the third column shows the time required

for the unmodified SnB to find the first correct structural

solution, and the fourth column presents the average time

required for SnB to find a structural solution based on 1000

trials. Computational time was assessed on a 3.0 GHz P4 Linux

workstation with 1 GB of RAM. It is clear from Table 5 that,

with the exception of the smallest structure (structure 1), the

sieve reduces the total time required to obtain a phase solu-

tion. Furthermore, the computational time requirements by

the sieve do not seem to be affected significantly by the size of

the structure, while those of the unmodified SnB seem to

increase with structure size.

The effect of reduced data resolution was also explored. At

1 Å, structures 1 through 7 completed with a similar amount of

computational effort. Structures 8 and 9, however, possessed

too many odd triplets in acceptable degree-of-freedom trun-

cation regions. Naturally, as expected, our reliance on direct

methods results in typical observations with regard to solution

limits. As structure size increases or the data resolution

decreases, the distribution of odd triplets in small truncated

sets increases. None of the structures produced solutions

beyond resolution of 1.2 Å.

The purpose of the probe is to quickly identify a starting M0,

which provides a suitable number of degrees of freedom

according to the criteria discussed above. By referencing Table

3, it becomes clear that the probe did indeed choose a starting

M0 for each structure which ensured that 	� is greater than the

number of reflections required to specify an origin, and on a

point with appreciable slope in 	� versus the number of

reflections. In addition, the probe effectively chose an M0 for

which a solution existed in the inhomogeneous shifted

systems. Considering all the structures, the number of sieve

iterations to find a solution did not exceed three. This is an

indication that, given dM, a solution was always identified in a

range of 30 reflections from the starting point for these test

structures. This result supports the effectiveness of the probe

and demonstrates how quickly odd triplets are removed for

low reflection sets.

Finally, despite ignoring isolated reflections, the MPE for

each of the structures is low. In the case of structures 1 and 2,

there were no isolated degrees of freedom so the iteration

converged to the exact solution. This also illustrates that

identification of an exact solution for a structure would simply

require enumeration of the isolated reflections. Doing this

would double the number of trial solutions required per

isolated reflection enumerated. Finally, the unusually high

MPE in the solution for structure 3 is actually due to an odd

triplet that was present in the identified solution’s system of

equations. This odd triplet was assumed to be even, and hence

produced a phase solution which is slightly in error. Despite

the existence of this odd triplet, however, a solution which

closely resembles the geometry of the published solution was

determined. This illustrates that, in some cases, the sieve is not

completely intolerant of odd triplets. Finally, an exact solution

to this structure can be found by starting at a lower M0.

7. Conclusions

This paper has proposed a new integer minimal principle for

phasing centrosymmetric structures, along with a triplet sieve

method to determine a small number of systems of equations,

the solution to one of which yields a correct set of phases.

Incorporation of symmetry relations into the integer minimal

principle model allows for proper solution of structures in

non-symmorphic space groups. The computational results

demonstrated that the triplet sieve is an effective means for

producing a highly accurate partial phase solution by solving a

system of equations generated from a small set of strongest

reflections. When coupled with SnB, each trial solution can be

expanded to a full phase set and produce a corresponding Rmin

and Rcrys. The statistics of these crystallographic figures of

merit are then sufficient to identify when the sieve has

produced a true structural solution. While we do observe the

typical limitations of direct methods regarding structure size

and resolution, a large increase in computational efficiency

results for all of the tested structures. Similar structures are

solved on a routine basis in a high-throughput manner. Hence,

a tenfold increase in efficiency over a large number of crystal

structures solved in a continuous fashion would represent a
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Table 5
Comparison of sieve and SnB: computation time in seconds required for
producing a correct structure solution.

Structure Sieve SnB hSnBi

1 0.6 0.3 0.8
2 0.8 6.7 6.3
3 3.0 4.3 12.6
4 1.2 3.6 5.1
5 0.7 0.9 3.7
6 4.4 18.5 76.4
7 3.1 366 600
8 0.8 41.4 18.4
9 1.8 18.9 79.3

Average 1.8 51.2 89.2

Table 4
Comparison of sieve and SnB: number of dual-space cycles needed for
producing a correct structure solution.

Structure Sieve SnB hSnBi

1 20 60 167
2 22 672 632
3 74 144 419
4 32 180 257
5 20 90 367
6 82 616 2545
7 14 18300 30000
8 8 1380 612
9 30 629 2643

Average 34 2452 4182



reduction in time from hours to minutes for a particular large-

scale run.

An interesting future direction would be the study of the

effect of adding quartets to the current model, as it seems that

quartets could effectively lower the number of degrees of

freedom even further, thus further improving the accuracy and

speed of the proposed method. Additionally, instead of relying

on progressive triplet set truncation, the availability of higher-

order invariants could be used to assess the even or odd

character of each triplet. Proper identification of included odd

triplets would certainly reduce the required number of

enumerated solutions and serve to push the current size and

resolution limits.
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